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Abstract: One-electron oxidation of a readily available phos-
phaalkene derived from a cyclic (alkyl)(amino)carbene affords a
phosphorus-centered radical cation that is indefinitely stable both
in solution and in the solid state, allowing a single X-ray diffraction
study to be performed. This species can be regarded as a
phosphinyl radical bearing a cationic substituent or, alternatively,
as a carbene-stabilized phospheniumyl radical (carbene—RP™).

The involvement of a variety of phosphorus-centered radicals
in chemical reactions has been recognized for many decades.* Some
of these paramagnetic species are persistent or even stable? in
solution at room temperature. The gas-phase electron diffraction
structures of phosphinyl radicals la and Ib (Figure 1) have been
reported.® However in the solid state, despite bulky substituents,
compounds | dimerize, which readily explains why only a few
phosphorus radicals (11 —V1)*® have been structurally characterized
by single-crystal X-ray diffraction studies. All these compounds
are resonance-stabilized radicals, and consequently, the calcul ated
spin density at a single phosphorus center is rather small (maximum
0.44e for VIb).*® Here we report the preparation of a phoshinyl
radical featuring a cationic substituent, for which the spin density
ismainly localized at a single phosphorus atom (0.67€). It is stable
at room temperature both in solution and in the solid state, allowing
a crystallographic study to be performed.

Recent reports have shown that athough [carbene—(RO),P(0)-],°
(carbene—BR,+),” and (carbene—ML,+)® adducts cannot be isolated,
they are significantly more stable than the corresponding free phos-
phonyl, boryl, and meta radicas. Encouraged by the isolation of radical
cations V|1, each of which can be viewed as a P, fragment capped
by two carbenes,*® we envisioned that an RP*™ unit could also be
stabilized by abulky and strong electron-donating carbene.® Obvioudly,
such a carbene—phospheniumyl adduct can aso be regarded as a
phosphinyl radical featuring a cationic substituent. To obtain the desired
radica cation, a synthetic strategy similar to that used for the
preparation of VI was chosen.*® Phosphaalkene 2 was prepared in two
steps by addition of (2,2,6,6-tetramethyl pi peridino)phosphine dichlo-
ride” to cydlic (akyl)(amino)carbene VI1a™ followed by reduction
with excess magnesium (Scheme 1). The strong polarization of the
PC bond was indicated by the relatively high field $!P NMR signal
(136 ppm) and low field 3C NMR chemical shift (207 ppm). Not
surprisingly, because of the electron-rich P nucleus, a one-electron
oxidation readily occurred at 25 °C upon addition of PhsC*B(CgFs)s~
to a benzene solution of 2. After workup, the radical cation 2 was
isolated as a dark-brown powder in 38% yield (mp 94—96 °C), and
single crystals were grown by layering hexane on top of a fluoroben-
zene solution at 5 °C.**
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Figure 1. Phosphorus radicals structurally characterized in the gas phase
(1) and in the solid state (11 —=VI)
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In the solid state, radical cation 2** adopts a V-shaped geometry
with a N2—P1—C1 angle of 107.3° (Figure 2, right). The P1—C1
(1.81 A) and P1—N2 (1.68 A) bond lengthsin 2+ are significantly
longer and shorter, respectively, than the corresponding onesin 2
(1.74 and 1.77 A) (Figure 2, left). These two bond distances are at
the lower ends of the ranges for P—C and P—N single bonds,

Figure 2. Molecular views (with 50% thermal ellipsoids) of (left) 2 and
(right) 2**. For clarity, the counterion [B(CsFs),~] and hydrogen atoms have
been omitted. Selected bond lengths (A) and angles (deg) in 2: P1—N2,
1.7655(11); P1—C1, 1.7376(14); N1—C1, 1.3805(16); N2—P1—C1, 108.90(6);
N1—C1—C4, 106.90(11). In 2*: P1—N2, 1.6805(14); P1—C1, 1.8137(17);
N1-C1, 1.318(2); N2—P1—C1, 107.26(8); N1-C1—C4, 110.18(13).
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Figure 3. EPR spectra of 2™ in (left) a fluorobenzene solution at 298 K
and (right) a frozen solution at 100 K.

Figure 4. Spin density for 2** caculated at the (U)M05-2X/def2-SVP level.
Red surfaces indicate regions of a density excess.

respectively, and are comparabl e to those observed in the gas-phase
electron diffraction study of 1 (P—C, 1.85 A; P—N, 1.62 A).3
Moreover, the N1—C1 bond distance in 2+ (1.32 A) is shorter than
that in 2 (1.38 A), indicating a double bond. Collectively, these
data are in agreement with those expected for a phoshinyl radical
bearing a cationic substituent.

The room-temperature EPR spectrum of 2™ in fluorobenzene
displays adoublet of multiplets (g = 2.007) due to alarge hyperfine
coupling constant with the phosphorus nucleus [a(®!P) = 99 G]
and a small constant with one or two nitrogen nuclei [a(**N) ~ 4
G] (Figure 3, left). The hyperfine coupling constant with P is
comparable to those observed for phosphinyl radicals 1 [a('P) =
96.3 (Ia) and 91.8 (Ib) G], for which the odd €electron resides
predominantly in a 3p(P) valence orbital. The EPR spectrum of
2" in afrozen fluorobenzene solution at 100 K was also measured
(Figure 3, right) and simulated, allowing the determination of the
principal values of the phosphorus hyperfine coupling tensor [aw(P)
= aW(P) = 23 G and ax(P) = 247 G, with g« = g,y = 2.009 and
0z = 2.018]. These values suggest that ~57 and ~2% of the
unpaired electron are localized on the 3p and 3s orbitals of
phosphorus, respectively.*? Consistent with these experimental data,
calculations at the (U)MO05-2X/def2-SVP level using the NBO
method™® confirmed that the spin density in 2** islocalized mainly
at phosphorus (67%) with small contributions from the nitrogen
atoms (16% for N2 and 10% for N1) (Figure 4).

To probe chemically the radical behavior of 2, excess "BusSnH
in benzene was added at 25 °C. The color changed immediately
from dark-brown to light-orange. After workup, phosphine 3 was
obtained as a pae-yellow powder (Scheme 1). Notably, the
geometric parameters observed for 3 are very similar to those of
2" (P—C, 1.84 A; P—N, 1.68 A; C—N, 1.31 A), confirming again
the phosphinyl nature of the latter.

The stability of phosphinyl radical 2** is due partly to steric
factors but more importantly to the presence of the cationic
substituent. It prevents the dimerization observed for other phos-
phinyl radicals, such as |, by electrostatic repulsion. With the same
strategy, avariety of novel stable radicals should become accessible.
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